Bifunctional Adsorbent-Catalytic Nanoparticles for the Refining of Renewable Feedstocks
نویسندگان
چکیده
A hybrid adsorbent-catalytic nanostructured material consisting of aminopropyl groups and nickel nanoparticles immobilized in mesoporous silica nanoparticles (APNi-MSN) was employed to selectively capture free fatty acids (FFAs) and convert them into saturated hydrocarbons. The working principle of these sorbent-catalytic particles was initially tested in the hydrogenation of oleic acid. Besides providing selectivity for the capture of FFAs, the adsorbent groups also affected the selectivity of the hydrogenation reaction, shifting the chemistry from hydrocracking-based (Ni) to hydrotreating-based and improving the carbon economy of the process. This approach was ultimately evaluated by the selective sequestration of FFAs from crude microalgal oil and their subsequent conversion into liquid hydrocarbons, demonstrating the suitability of this design for the refinery of renewable feedstocks.
منابع مشابه
Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
Developing earth-abundant, active and stable electrocatalysts which operate in the same electrolyte for water splitting, including oxygen evolution reaction and hydrogen evolution reaction, is important for many renewable energy conversion processes. Here we demonstrate the improvement of catalytic activity when transition metal oxide (iron, cobalt, nickel oxides and their mixed oxides) nanopar...
متن کاملAn Efficient Pd-Sn Catalyst Supported on MWNTs for Hydrogenation of High Concentrated Acetylene Feedstocks: The Potential Role of Isolated Adsorption Site
In the present study, tin-promoted Pd/MWNTs nanocatalystwas synthesized via polyol technique for application in hydrogenation of high-concentrated acetylene feedstocks. TEM images showed a restricted distribution of nanoparticles in the range of 3-5 nm. The results indicated that nanoparticles sizes were resistant to further catalyst deactivation. XRD patterns signified alloying between Pd and ...
متن کاملAn Experimental Investigation of the Catalytic Effect of Fe2O3 Nanoparticle on Steam Injection Process of an Iranian Reservoir
Nanotechnology has the potential to introduce revolutionary changes to several areas of oil and gas industry such as exploration, production, enhanced oil recovery, and refining. In this paper, the effect of different concentrations of Fe2O3 nanoparticles as a catalyst on the heavy oil viscosity at various temperatures is studied. Furthermore, the effect of a mixture of Fe2O3 nanoparticles and ...
متن کاملMegranate-like nanoreactor with multiple cores and an acidic mesoporous shell for a cascade reaction.
Megranate-like nanoparticles possess a unique structure that is composed of multiple cores and shells, which is different from simple yolk-shell nanoparticles. Megranate-like nanoparticles can combine the properties of each component and be used as nanoreactors. This study describes the preparation of bifunctional megranate-like nanoreactors, consisting of multiple metal cores and thiol modifie...
متن کاملCobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions.
Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arisi...
متن کامل